Home | english  | Impressum | KIT
Photo von Heinz Wörn

Prof. Dr.-Ing. Dr. h.c. Heinz Wörn

Professor im Ruhestand
Tel.: +49 721 608-44006
Fax: +49 721 608-47141
woernJjx5∂kit edu

Zur Person

Professor Wörn studierte Elektrotechnik an der Universität Stuttgart und promovierte dort am Institut für Werkzeugmaschinen mit seiner Arbeit zu dem Thema "Mehrprozessorsteuerungssystem für Werkzeugmaschinen mit standartisierten Schnittstellen". Im Anschluss arbeitete er bei KUKA Schweißanlagen und Roboter GmbH, wo er eine leitende Stellung in Forschung und Entwicklung inne hatte. Professor Wörn ist ein international anerkannter Experte für Roboter und Automation. Seine Erfahrung umfasst Roboteranwendungen, Robotersteuerungen und Sensoren für Roboter, sowie deren Programmmierung und Simulation. Seit 1997 leitet er das Institut für Prozessrechentechnik, Automation und Robotik der Universität Karlsruhe als Professor für "Komplexe Systeme in Automation und Robotik".


  • Planung, Programmierung, Steuerung, Diagnose und Sensorsysteme für Industrieroboter
  • Autonome, mobile Roboter, Mikroroboter, Serviceroboter, Teleroboter, Autonome Fahrzeuge
  • Planung und Simulation von Anlagen und Fabriken
  • Roboter- und sensorgestützte Chirurgie
  • Mikromontage
  • Modellierung komplexer Systeme in Produktion und Medizin

Aggregating Robots Compute: An Adaptive Heuristic for the Euclidean Steiner Tree Problem

AutorHeiko Hamann, Heinz Wörn
Veröffentlicht inThe tenth International Conference on Simulation of Adaptive Behavior (SAB'08), LNAI 5040
EditorM. Asada et al.
KurzfassungIt is becoming state-of-the-art to form large-scale multi-agent systems or artificial swarms showing adaptive behavior by constructing high numbers of cooperating, embodied, mobile agents (robots). For the sake of space- and cost-efficiency such robots are typically miniaturized and equipped with only few sensors and actuators resulting in rather simple devices. In order to overcome these constraints, bio-inspired concepts of self-organization and emergent properties are applied. Thus, accuracy is usually not a trait of such systems, but robustness and fault tolerance are. It turns out that they are applicable to even hard problems and reliably deliver approximated solutions. Based on these principles we present a heuristic for the Euclidean Steiner tree problem which is NP-hard. Basically, it is the problem of connecting objects in a plane efficiently. The proposed system is investigated from two different viewpoints: computationally and behaviorally. While the performance is, as expected, clearly suboptimal but still reasonably well, the system is adaptive and robust.
Bibtex@article{ ipr_1170857207, author = "{Heiko Hamann and Heinz W{{\"o}}rn}", title = "{Aggregating Robots Compute: An Adaptive Heuristic for the Euclidean Steiner Tree Problem}", year = "2008", journal = "{The tenth International Conference on Simulation of Adaptive Behavior (SAB'08), LNAI 5040}", pages = "447--456", }
zurück zur Publikationsübersicht